

FARM TO TABLE: PESTICIDE RESIDUES AND RISK ASSESSMENT

JANET V. COWINS, Ph.D.

CHEMIST

U.S. ENVIRONMENTAL PROTECTION AGENCY

HEALTH EFFECTS DIVISION/RISK ASSESSMENT BRANCH 2

DISCUSSION OUTLINE

- Overview of U.S. Pesticide Registration
 - Purpose of Residue Chemistry Data
 - Residue Chemistry Considerations
- Dietary Exposure and Risk Assessment
 - Types of Dietary Assessments
 - Dietary Exposure Models
 - Food Consumption Data

OVERVIEW – U.S. PESTICIDE REGISTRATION

What is a Tolerance?

Definition: Maximum legally allowable

pesticide residue in/on foods and

feeds

Synonym: Maximum Residue Level (MRL)

Purpose: Enforcement tool to detect misuse

and facilitate trade

PURPOSE OF RESIDUE CHEMISTRY

With the Food Quality Protection Act, Congress has mandated that when establishing a pesticide tolerance,

the EPA must show...

"... that there is a reasonable certainty that no harm will result from aggregate exposure to the pesticide chemical residue, including all anticipated dietary exposures and all other exposures for which there is reliable information."

RESIDUE CHEMISTRY CONSIDERATIONS

Risk

Hazard (Toxicology)

Exposure (Chemistry)

X

RESIDUE CHEMISTRY CONSIDERATIONS

Product Label + Residue Chemistry = Tolerance

RESIDUE CHEMISTRY CONSIDERATIONS

- A tolerance enforcement method must be available before a tolerance (MRL) can be established
- Multi-Residue Methods (MRMs) = methods that measure many pesticides and metabolites in a single analysis

No approved method = no use

RESIDUE CHEMISTRY AND TOLERANCE SETTING

Regulatory Enforcement
With International Harmonization

HOW ARE MRLS CALCULATED?

- Organisation for Economic Cooperation and Development (OECD) MRL Calculator
- Benefits of the OECD MRL Calculator
 - Simple to use
 - Avoid/minimize trade barriers
 - Improve work sharing/joint review process

OECD MRL CALCULATOR OUTPUT

Cor	pound

Crop

Region / Country

GAP

Compound				
Crop				
Region / Country				
GAP				

Residues	(mg/	kg)
6.050		
4.780		
10.420	\uparrow	•
3.690		
9.220		
2.150		
3.440		
4.680		
5.100		
1.420		
2.490		
1.770		
2.090		
4.100		
2.430		
1.610		

Total number of data (n)	16
Percentage of censored data	0%
Number of non-censored data	16
Lowest residue	1.420
Highest residue	10.420
Median residue	3.565
Mean	4.090
Standard deviation (SD)	2.638
Correction factor for censoring (CF)	1.000

Proposed MRL estimate

- Highest residue	10.420
- Mean + 4 SD	14.642
- CF x 3 Mean	12.270
Unrounded MRL	14.642

Rounded MRL

MRLS

MRLs are enforcement based, but are supported by a risk assessment and a safety finding; however...

No Safety Finding = No MRL

QUICK RECAP

DIETARY EXPOSURE

Exposure = (mg/kg bw/day)

Residue x Consumption
(mg/kg food) (kg food/kg bw per day)
(mg/L water)

Tolerance, Anticipated Residues

[FT or Monitoring Data]

Dietary Exposure Models

DIETARY ASSESSMENTS: ACUTE, CHRONIC, AND CANCER

Acute:

- Risk resulting from 1-day exposure
- Residue level, food consumption, and endpoint all must represent 1-day exposure or dosing

Chronic:

- Risk resulting from 6 months to lifetime exposure
- Residue level, food consumption, and endpoint all represent long term exposure or dosing

Cancer:

Assess the risk from a chemical using the cancer potency factor, Q*

DIETARY EXPOSURE REFINEMENTS

Unrefined Assessment: Tolerance-level residues and 100%CT

- Crop Treated
- Field trial data
- •PDP/FDA
- Processing studies
- Cooking Factors
- Bridging studies
- Residue degradation/decline studies
- •Market basket data

Highly Refined Assessment

residue refinements

DIETARY EXPOSURE ASSESSMENT

USE OF MODELS BY OPP

- OPP uses DEEM for:
 - Acute, chronic, and cancer single-chemical dietary assessments
 - Cumulative assessments (acute)
 - Food + drinking water
- OPP uses Calendex for:
 - Multiple-day (longitudinal) assessments
 - Aggregate, Cumulative
- Other Models accepted by EPA:
 - Lifeline
 - CARES

DIETARY EXPOSURE MODEL

INTRODUCTION TO DEEM™ SOFTWARE (CONT.)

- Inputs include
 - Toxicity information (PAD)
 - Exposure information
 - Residues
 - Food consumption (from NHANES/WWEIA)
- Output includes
 - Exposure levels (mg/kg bwt/day)
 - Risk (% PAD occupied)
 - Risk "drivers"

DEEM™ EXPOSURE AND RISK CALCULATIONS

- Utilizes individual daily consumption as reported in NHANES/WWEIA
- The consumption values are combined with randomly selected residue values and analyzed to result in a distribution of exposure values

Exposure = Consumption x Residue

DEEM™ EXPOSURE AND RISK CALCULATIONS (CONT.)

- DEEM™ then compares the exposure as calculated based on pesticide residues on food and NHANES food consumption data to the toxic reference point.
 - aPAD or cPAD
- Output of DEEM™ identifies the foods, residues, and consumption values that contribute the most to acute and chronic exposure.

FOOD CONSUMPTION DATA

- National Health and Nutrition Examination Survey – What We Eat in America (NHANES/WWEIA)
- Current model uses 2003 2008 surveys
- > 20 thousand individuals
- 2 non-consecutive days per person
- Foods as consumed

FOOD CONSUMPTION DATA: APPLE PIE

Tolerance Level

vs.
Actual
Residues

Crop Field Trial Residue Data Highest or Average Value

Monitoring Data

Actual Value

Storage,
Cooking,
Commercial
processing,
Food
preparation

REAL WORLD EXAMPLE RESIDUES

Refinements & Data

Clothianidin Residues in Celery

CONCLUSIONS

- Risk is calculated from an equation which combines toxicity information and exposure information.
- Exposure is calculated by combining reported consumption values (NHANES/WWEIA) of foods with pesticide residues on those foods.
- Our dietary models allow the Agency to take full advantage on the information inherent in distributions of residue data and consumption patterns.
- Available residue data support the establishment of a MRL for enforcement purposes.
- The risk assessment supports that the Agency can make a safety finding.

ACKNOWLEDGEMENTS

- Christina Swartz (Branch Chief)
 - RAB2
- Michael A. Doherty, Ph.D. (Mentor)

CONTACT INFORMATION

For further questions, contact:

Janet V. Cowins, Ph.D., Chemist
Risk Assessment Branch 2
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
cowins.janet@epa.gov

THANK YOU!

QUESTIONS???

EXTRA SLIDES

REFINEMENTS & DATA

RESIDUE DATA SOURCES

Screening Level	Moderately Refined	Highly Refined
MRLs	Crop Field Trials Feeding Studies % Crop Treated Blending	Monitoring Data
Default		
Processing		
Factor		
	Processing Studies	Cooking Studies

32

DIETARY EXPOSURE

Exposure = Residue x Consumption

FOOD CONSUMPTION

- Recipe files
 - Standardized ingredients for foods as consumed

